Abstract
We present the first result for kernel regression where the procedure adapts locally at a point x to both the unknown local dimension of the metric space χ and the unknown Hölder-continuity of the regression function at x. The result holds with high probability simultaneously at all points x in a general metric space χ of unknown structure.
Original language | English (US) |
---|---|
Journal | Advances in Neural Information Processing Systems |
State | Published - 2013 |
Event | 27th Annual Conference on Neural Information Processing Systems, NIPS 2013 - Lake Tahoe, NV, United States Duration: Dec 5 2013 → Dec 10 2013 |
All Science Journal Classification (ASJC) codes
- Computer Networks and Communications
- Information Systems
- Signal Processing