Adaptive modulation scheme for simultaneous voice and data transmission over fading channels

Mohamed Slim Alouini, Xiaoyi Tang, Andrea J. Goldsmith

Research output: Contribution to journalArticlepeer-review

103 Scopus citations

Abstract

We propose a new adaptive modulation technique for simultaneous voice and data transmission over fading channels and study its performance. The proposed scheme takes advantage of the time-varying nature of fading to dynamically allocate the transmitted power between the inphase (I) and quadrature (Q) channels. It uses fixed-rate binary phase shift keying (BPSK) modulation on the Q channel for voice, and variable-rate M-ary amplitude modulation (M-AM) on the I channel for data. For favorable channel conditions, most of the power is allocated to high rate data transmission on the I channel. The remaining power is used to support the variable-power voice transmission on the Q channel. As the channel degrades, the modulation gradually reduces its data throughput and reallocates most of its available power to ensure a continuous and satisfactory voice transmission. The scheme is intended to provide a high average spectral efficiency for data communications while meeting the stringent delay requirements imposed by voice. We present closed-form expressions as well as numerical and simulation results for the outage probability, average allocated power, achievable spectral efficiency, and average bit error rate (BER) for both voice and data transmission over Nakagami-m fading channels. We also discuss the features and advantages of the proposed scheme. For example, in Rayleigh fading with an average signal-to-noise ratio (SNR) of 20 dB, our scheme is able to transmit about 2 Bits/s/Hz of data at an average BER of 10-5 while sending about 1 Bit/s/Hz of voice at an average BER of 10-2.

Original languageEnglish (US)
Pages (from-to)837-850
Number of pages14
JournalIEEE Journal on Selected Areas in Communications
Volume17
Issue number5
DOIs
StatePublished - May 1999
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Adaptive modulation scheme for simultaneous voice and data transmission over fading channels'. Together they form a unique fingerprint.

Cite this