Actionable Models: Unsupervised Offline Reinforcement Learning of Robotic Skills

Yevgen Chebotar, Karol Hausman, Yao Lu, Ted Xiao, Dmitry Kalashnikov, Jake Varley, Alex Irpan, Benjamin Eysenbach, Ryan Julian, Chelsea Finn, Sergey Levine

Research output: Chapter in Book/Report/Conference proceedingConference contribution

33 Scopus citations

Abstract

We consider the problem of learning useful robotic skills from previously collected offline data without access to manually specified rewards or additional online exploration, a setting that is becoming increasingly important for scaling robot learning by reusing past robotic data. In particular, we propose the objective of learning a functional understanding of the environment by learning to reach any goal state in a given dataset. We employ goal-conditioned Q-learning with hindsight relabeling and develop several techniques that enable training in a particularly challenging offline setting. We find that our method can operate on high-dimensional camera images and learn a variety of skills on real robots that generalize to previously unseen scenes and objects. We also show that our method can learn to reach long-horizon goals across multiple episodes through goal chaining, and learn rich representations that can help with downstream tasks through pre-training or auxiliary objectives. The videos of our experiments can be found at https://actionable-models.github.io.

Original languageEnglish (US)
Title of host publicationProceedings of the 38th International Conference on Machine Learning, ICML 2021
PublisherML Research Press
Pages1518-1528
Number of pages11
ISBN (Electronic)9781713845065
StatePublished - 2021
Externally publishedYes
Event38th International Conference on Machine Learning, ICML 2021 - Virtual, Online
Duration: Jul 18 2021Jul 24 2021

Publication series

NameProceedings of Machine Learning Research
Volume139
ISSN (Electronic)2640-3498

Conference

Conference38th International Conference on Machine Learning, ICML 2021
CityVirtual, Online
Period7/18/217/24/21

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'Actionable Models: Unsupervised Offline Reinforcement Learning of Robotic Skills'. Together they form a unique fingerprint.

Cite this