Acoustic phonon strain induced mixing of the fine structure levels in colloidal CdSe quantum dots observed by a polarization grating technique

Vanessa M. Huxter, Gregory D. Scholes

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

Acoustic phonon modes in colloidal semiconductor nanocrystals are of significant interest due to their role in dephasing and as the main component of homogeneous line broadening. Despite their importance, these modes have proven elusive and have only recently been experimentally observed. This paper expands on results presented in our earlier paper [V. M. Huxter, A. Lee, S. S. Lo, Nano Lett. 9, 405 (2008)], where a cross polarized heterodyne detected ultrafast transient grating (CPH-3TG) technique was used to observe the acoustic phonon mode. In the present work, we explain the origin of the observed quantum beat in the CPH-3TG signal. Further experiments are presented that show that the observed quantum beat, which arises from a coherent acoustic phonon mode in the nanocrystals, appears in anisotropy-type signals. The action of this mode induces a periodic strain in the nanocrystal that lowers the symmetry of the unit cell, mixing the fine structure states and their transition dipole moments. This mixing is manifested in anisotropy signals as a depolarization, which periodically modifies the rotational averaging factors. Through observation of the acoustic phonon mode using the CPH-3TG optical technique, it is possible to access its microscopic (atomic-level) basis and to use it as a probe to quantify changing macroscopic (whole particle) material parameters.

Original languageEnglish (US)
Article number104506
JournalJournal of Chemical Physics
Volume132
Issue number10
DOIs
StatePublished - 2010
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Acoustic phonon strain induced mixing of the fine structure levels in colloidal CdSe quantum dots observed by a polarization grating technique'. Together they form a unique fingerprint.

Cite this