Achieving Extremely Low Latency: Joint Finite-Blocklength Coding over Multiple Users in Downlinks

Xiaoyu Zhao, Wei Chen, H. Vincent Poor

Research output: Contribution to journalConference articlepeer-review

1 Scopus citations

Abstract

With over-the-air latency on the order of 0.1ms an-ticipated in 6G systems, the practical design of Finite-Blocklength Coding (FBC) has the potential to achieve extremely low latency communications. For this purpose, we focus on a joint FBC scheme in multi-user downlink systems. With a requirement of extremely low latency, we jointly encode data bits of multiple users over their orthogonal channel resources. As a result, we obtain throughput gain of the downlink transmission by an enlarged blocklength of FBC. In particular, we first present the joint encoding design for multiple downlink users by a matrix-based method. Under the multi-user joint FBC scheme, we then formulate an Integer Programming (IP) problem to maximize the throughput of downlink users subject to an average constraint on transmission power. By converting the derived IP problem to a nonlinear bipartite matching problem, we finally present a unified algorithm to obtain the optimal power-constrained throughput within the low latency requirement.

Original languageEnglish (US)
JournalProceedings - IEEE Global Communications Conference, GLOBECOM
DOIs
StatePublished - 2021
Externally publishedYes
Event2021 IEEE Global Communications Conference, GLOBECOM 2021 - Madrid, Spain
Duration: Dec 7 2021Dec 11 2021

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Computer Networks and Communications
  • Hardware and Architecture
  • Signal Processing

Fingerprint

Dive into the research topics of 'Achieving Extremely Low Latency: Joint Finite-Blocklength Coding over Multiple Users in Downlinks'. Together they form a unique fingerprint.

Cite this