TY - JOUR
T1 - Accurate genome-wide predictions of spatiotemporal gene expression during embryonic development
AU - Zhou, Jian
AU - Schor, Ignacio E.
AU - Yao, Victoria
AU - Theesfeld, Chandra L.
AU - Marco-Ferreres, Raquel
AU - Tadych, Alicja
AU - Furlong, Eileen E.M.
AU - Troyanskaya, Olga G.
N1 - Publisher Copyright:
© 2019 Zhou et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2019
Y1 - 2019
N2 - Comprehensive information on the timing and location of gene expression is fundamental to our understanding of embryonic development and tissue formation. While high-throughput in situ hybridization projects provide invaluable information about developmental gene expression patterns for model organisms like Drosophila, the output of these experiments is primarily qualitative, and a high proportion of protein coding genes and most non-coding genes lack any annotation. Accurate data-centric predictions of spatio-temporal gene expression will therefore complement current in situ hybridization efforts. Here, we applied a machine learning approach by training models on all public gene expression and chromatin data, even from whole-organism experiments, to provide genome-wide, quantitative spatiotemporal predictions for all genes. We developed structured in silico nano-dissection, a computational approach that predicts gene expression in >200 tissue-developmental stages. The algorithm integrates expression signals from a compendium of 6,378 genome-wide expression and chromatin profiling experiments in a cell lineage-aware fashion. We systematically evaluated our performance via cross-validation and experimentally confirmed 22 new predictions for four different embryonic tissues. The model also predicts complex, multi-tissue expression and developmental regulation with high accuracy. We further show the potential of applying these genome-wide predictions to extract tissue specificity signals from non-tissue-dissected experiments, and to prioritize tissues and stages for disease modeling. This resource, together with the exploratory tools are freely available at our webserver http://find.princeton.edu, which provides a valuable tool for a range of applications, from predicting spatio-temporal expression patterns to recognizing tissue signatures from differential gene expression profiles.
AB - Comprehensive information on the timing and location of gene expression is fundamental to our understanding of embryonic development and tissue formation. While high-throughput in situ hybridization projects provide invaluable information about developmental gene expression patterns for model organisms like Drosophila, the output of these experiments is primarily qualitative, and a high proportion of protein coding genes and most non-coding genes lack any annotation. Accurate data-centric predictions of spatio-temporal gene expression will therefore complement current in situ hybridization efforts. Here, we applied a machine learning approach by training models on all public gene expression and chromatin data, even from whole-organism experiments, to provide genome-wide, quantitative spatiotemporal predictions for all genes. We developed structured in silico nano-dissection, a computational approach that predicts gene expression in >200 tissue-developmental stages. The algorithm integrates expression signals from a compendium of 6,378 genome-wide expression and chromatin profiling experiments in a cell lineage-aware fashion. We systematically evaluated our performance via cross-validation and experimentally confirmed 22 new predictions for four different embryonic tissues. The model also predicts complex, multi-tissue expression and developmental regulation with high accuracy. We further show the potential of applying these genome-wide predictions to extract tissue specificity signals from non-tissue-dissected experiments, and to prioritize tissues and stages for disease modeling. This resource, together with the exploratory tools are freely available at our webserver http://find.princeton.edu, which provides a valuable tool for a range of applications, from predicting spatio-temporal expression patterns to recognizing tissue signatures from differential gene expression profiles.
UR - http://www.scopus.com/inward/record.url?scp=85072993071&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85072993071&partnerID=8YFLogxK
U2 - 10.1371/journal.pgen.1008382
DO - 10.1371/journal.pgen.1008382
M3 - Article
C2 - 31553718
AN - SCOPUS:85072993071
SN - 1553-7390
VL - 15
JO - PLoS genetics
JF - PLoS genetics
IS - 9
M1 - e1008382
ER -