TY - JOUR
T1 - Accessibilities of reactive minerals in consolidated sedimentary rock
T2 - An imaging study of three sandstones
AU - Peters, Catherine Anne
N1 - Funding Information:
Financial support for this project came from the Department of Energy, Office of Basic Energy Sciences, through Grant No. DE-FG02-05ER15636. Princeton graduate Marissa L. Maier'06 generated the BSE images as part of her senior thesis research, and worked on an early version of the image segmentation algorithm. Princeton graduate Yann Le Gall'08 played a role in code development related to the perimeter analysis. Finally, Dr. Stephan Bachu of the Alberta Geological Survey (now at the Alberta Research Council) kindly provided the rock specimens used in this study.
PY - 2009/7/15
Y1 - 2009/7/15
N2 - Widespread implementation of geological storage of CO2 requires an understanding of dissolution reactions with formation minerals. This will be aided by reactive transport modeling, which relies on accurate estimates of the accessible surface areas of reactive minerals in consolidated sedimentary rocks. For three Viking sandstones (Alberta sedimentary basin, Canada), we have employed backscattered electron microscopy and energy dispersive X-ray spectroscopy to examine mineral content and to statistically characterize mineral contact with pore space. Porosities range from 20% in a lightly-cemented sandstone with grains on the order of 100 μm, to 8% in a highly-cemented shaly sandstone with a mix of primary pore space and fractures, to 7% in a lightly-cemented conglomerate sandstone with grain sizes between 500 μm and 1 mm. In all three specimens, kaolinite is the primary authigenic clay mineral cementing quartz grains. It accounts for only 5% to 31% of mineral content, but 65% to 86% of pore-mineral contact boundaries. The sandstone specimen has 6% minerals in the "reactive" category, which in this study includes minerals other than kaolinite and quartz, such as K-feldspar, apatite and pyrite. For this specimen, only one third of the reactive minerals are accessible to pore fluids due to clay-mineral grain coatings. For the shaly sandstone, only one fifth of its 5% reactive minerals are accessible to pore fluids due to regions of cementation of fine detrital matrix. Thus, if a mineral volume fraction is used in reactive transport modeling as a proportional measure of accessible surface area in consolidated sandstones, the reaction rates are likely to be overestimated by three to five times. The conglomerate sandstone has only 1% of its mineral matter in this category, and these are often found as inclusions rather than grains.
AB - Widespread implementation of geological storage of CO2 requires an understanding of dissolution reactions with formation minerals. This will be aided by reactive transport modeling, which relies on accurate estimates of the accessible surface areas of reactive minerals in consolidated sedimentary rocks. For three Viking sandstones (Alberta sedimentary basin, Canada), we have employed backscattered electron microscopy and energy dispersive X-ray spectroscopy to examine mineral content and to statistically characterize mineral contact with pore space. Porosities range from 20% in a lightly-cemented sandstone with grains on the order of 100 μm, to 8% in a highly-cemented shaly sandstone with a mix of primary pore space and fractures, to 7% in a lightly-cemented conglomerate sandstone with grain sizes between 500 μm and 1 mm. In all three specimens, kaolinite is the primary authigenic clay mineral cementing quartz grains. It accounts for only 5% to 31% of mineral content, but 65% to 86% of pore-mineral contact boundaries. The sandstone specimen has 6% minerals in the "reactive" category, which in this study includes minerals other than kaolinite and quartz, such as K-feldspar, apatite and pyrite. For this specimen, only one third of the reactive minerals are accessible to pore fluids due to clay-mineral grain coatings. For the shaly sandstone, only one fifth of its 5% reactive minerals are accessible to pore fluids due to regions of cementation of fine detrital matrix. Thus, if a mineral volume fraction is used in reactive transport modeling as a proportional measure of accessible surface area in consolidated sandstones, the reaction rates are likely to be overestimated by three to five times. The conglomerate sandstone has only 1% of its mineral matter in this category, and these are often found as inclusions rather than grains.
KW - Backscattered electron microscopy
KW - Carbon dioxide
KW - Geological storage
KW - Reactive transport
KW - Sandstone
KW - Surface area
UR - http://www.scopus.com/inward/record.url?scp=68649124758&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=68649124758&partnerID=8YFLogxK
U2 - 10.1016/j.chemgeo.2008.11.014
DO - 10.1016/j.chemgeo.2008.11.014
M3 - Article
AN - SCOPUS:68649124758
SN - 0009-2541
VL - 265
SP - 198
EP - 208
JO - Chemical Geology
JF - Chemical Geology
IS - 1-2
ER -