Abstract
A number of approaches to solar fuels generation are being developed, each of which has associated advantages and challenges. Many of these solar fuels generators are identified as "photoelectrochemical cells" even though these systems collectively operate based on a suite of fundamentally different physical principles. To facilitate appropriate comparisons between solar fuels generators, as well as to enable concise and consistent identification of the state-of-the-art for designs based on comparable operating principles, we have developed a taxonomy and nomenclature for solar fuels generators based on the source of the asymmetry that separates photogenerated electrons and holes. Three basic device types have been identified: photovoltaic cells, photoelectrochemical cells, and particulate/molecular photocatalysts. We outline the advantages and technological challenges associated with each type, and provide illustrative examples for each approach as well as for hybrid approaches.
Original language | English (US) |
---|---|
Pages (from-to) | 16-25 |
Number of pages | 10 |
Journal | Energy and Environmental Science |
Volume | 8 |
Issue number | 1 |
DOIs | |
State | Published - Jan 1 2015 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Environmental Chemistry
- Renewable Energy, Sustainability and the Environment
- Nuclear Energy and Engineering
- Pollution