A survey of structure from motion

Onur Özyeşil, Vladislav Voroninski, Ronen Basri, Amit Singer

Research output: Contribution to journalArticlepeer-review

254 Scopus citations


The structure from motion (SfM) problem in computer vision is to recover the three-dimensional (3D) structure of a stationary scene from a set of projective measurements, represented as a collection of two-dimensional (2D) images, via estimation of motion of the cameras corresponding to these images. In essence, SfM involves the three main stages of (i) extracting features in images (e.g. points of interest, lines, etc.) and matching these features between images, (ii) camera motion estimation (e.g. using relative pairwise camera positions estimated from the extracted features), and (iii) recovery of the 3D structure using the estimated motion and features (e.g. by minimizing the so-called reprojection error). This survey mainly focuses on relatively recent developments in the literature pertaining to stages (ii) and (iii). More specifically, after touching upon the early factorization-based techniques for motion and structure estimation, we provide a detailed account of some of the recent camera location estimation methods in the literature, followed by discussion of notable techniques for 3D structure recovery. We also cover the basics of the simultaneous localization and mapping (SLAM) problem, which can be viewed as a specific case of the SfM problem. Further, our survey includes a review of the fundamentals of feature extraction and matching (i.e. stage (i) above), various recent methods for handling ambiguities in 3D scenes, SfM techniques involving relatively uncommon camera models and image features, and popular sources of data and SfM software.

Original languageEnglish (US)
Pages (from-to)305-364
Number of pages60
JournalActa Numerica
StatePublished - May 1 2017

All Science Journal Classification (ASJC) codes

  • Numerical Analysis
  • General Mathematics


Dive into the research topics of 'A survey of structure from motion'. Together they form a unique fingerprint.

Cite this