A study on ethanol oxidation kinetics in laminar premixed flames, flow reactors, and shock tubes

F. N. Egolfopoulos, D. X. Du, C. K. Law

Research output: Contribution to journalArticlepeer-review

199 Scopus citations

Abstract

A comprehensive experimental and numerical study on ethanol oxidation kinetics has been conducted. The laminar flame speeds of ethanol/air mixtures were determined by using the counterflow twin-flame technique at 1 atm pressure and for initial mixture temperatures between 363 and 453 K. A detailed kinetic scheme was subsequently compiled by grafting the latest information on ethanol kinetics onto a previously developed methanol scheme, and was found to be self-consistent in that it closely predicts not only the experimental laminar flame speeds of ethanol, but also those of methane, methanol, and all the C2-hydrocarbons. Further recognizing that prediction of the laminar flame speeds is not sufficient for the satisfactory validation of a kinetic mechanism, the present scheme has also been tested against experimental data in the literature on the species and temperature profiles in flow reactors and on the ignition delay times in shock tubes. Such studies demonstrate the importance of the CH3 and HO2 radical chemistry, and the present results suggest that the rate of CH3+HO2→ CH3O+OH may be slower while that of CH3+HO2→CH4+O2 may be faster than values frequently used in recent literature.

Original languageEnglish (US)
Pages (from-to)833-841
Number of pages9
JournalSymposium (International) on Combustion
Volume24
Issue number1
DOIs
StatePublished - 1992
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General Chemical Engineering
  • Fuel Technology
  • Energy Engineering and Power Technology
  • Mechanical Engineering
  • Physical and Theoretical Chemistry
  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'A study on ethanol oxidation kinetics in laminar premixed flames, flow reactors, and shock tubes'. Together they form a unique fingerprint.

Cite this