A strategy for the simultaneous catalytic conversion of hemicellulose and cellulose from lignocellulosic biomass to liquid transportation fuels

Jeehoon Han, S. Murat Sen, David Martin Alonso, James A. Dumesic, Christos T. Maravelias

Research output: Contribution to journalArticlepeer-review

101 Scopus citations

Abstract

We develop and evaluate an integrated catalytic conversion strategy, which utilizes both the hemicellulose and cellulose fractions of lignocellulosic biomass to produce liquid hydrocarbon fuels (butene oligomers). In this strategy, the cellulose and hemicellulose fractions are simultaneously converted to levulinic acid (LA), using LA-derived γ-valerolactone (GVL) as a solvent. The LA is then converted to GVL, which is subsequently converted to butene, and then to butene oligomers. To generate the integrated strategy, we develop separation subsystems to achieve experimentally optimized feed concentrations for the catalytic conversion steps. Importantly, to minimize the utility requirements of the overall process, we perform heat integration, which allows us to satisfy all heating requirements from combustion of biomass residues, which are also used to produce steam for electricity generation. In addition, we develop an alternative design in which there is no electricity generation, study alternative feedstocks, and perform sensitivity analyses. Our technoeconomic analysis shows that the integrated strategy using hybrid poplar feedstock leads to a minimum selling price of $4.01 per gallon of gasoline equivalent for butene oligomers if biomass residues are sold as low quality fuel.

Original languageEnglish (US)
Pages (from-to)653-661
Number of pages9
JournalGreen Chemistry
Volume16
Issue number2
DOIs
StatePublished - Feb 2014
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Environmental Chemistry
  • Pollution

Fingerprint

Dive into the research topics of 'A strategy for the simultaneous catalytic conversion of hemicellulose and cellulose from lignocellulosic biomass to liquid transportation fuels'. Together they form a unique fingerprint.

Cite this