@inproceedings{5af38046876d4521b61a130761b63f93,
title = "A semi-supervised method for multi-subject FMRI functional alignment",
abstract = "Practical limitations on the duration of individual fMRI scans have led neuroscientist to consider the aggregation of data from multiple subjects. Differences in anatomical structures and functional topographies of brains require aligning data across subjects. Existing functional alignment methods serve as a preprocessing step that allows subsequent statistical methods to learn from the aggregated multi-subject data. Despite their success, current alignment methods do not leverage the labeled data used in the subsequent methods. In this work we propose a semi-supervised scheme that simultaneously learns the alignment and performs the analysis. We derive a specific instance of the scheme using the Shared Response Model for alignment and Multinomial Logistic Regression for classification. In our experiments this method improves the average classification accuracy from 65.5% to 68.5%, and from 5.3% to 6.1% over the independently-trained methods. Furthermore, our method achieves similar prediction with almost half the samples used for alignment.",
keywords = "fMRI, functional alignment, semi-supervised method, shared response model",
author = "Turek, {Javier S.} and Willke, {Theodore L.} and Chen, {Po Hsuan} and Ramadge, {Peter J.}",
note = "Publisher Copyright: {\textcopyright} 2017 IEEE.; 2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017 ; Conference date: 05-03-2017 Through 09-03-2017",
year = "2017",
month = jun,
day = "16",
doi = "10.1109/ICASSP.2017.7952326",
language = "English (US)",
series = "ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "1098--1102",
booktitle = "2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017 - Proceedings",
address = "United States",
}