TY - JOUR
T1 - A Sea State Dependent Gas Transfer Velocity for CO2 Unifying Theory, Model, and Field Data
AU - Zhou, Xiaohui
AU - Reichl, Brandon G.
AU - Romero, Leonel
AU - Deike, Luc
N1 - Publisher Copyright:
© 2023 The Authors. Earth and Space Science published by Wiley Periodicals LLC on behalf of American Geophysical Union.
PY - 2023/11
Y1 - 2023/11
N2 - Wave breaking induced bubbles contribute a significant part of air-sea gas fluxes. Recent modeling of the sea state dependent CO2 flux found that bubbles contribute up to ∼40% of the total CO2 air-sea fluxes (Reichl & Deike, 2020, https://doi.org/10.1029/2020gl087267). In this study, we implement the sea state dependent bubble gas transfer formulation of Deike and Melville (2018, https://doi.org/10.1029/2018gl078758) into a spectral wave model (WAVEWATCH III) incorporating the spectral modeling of the wave breaking distribution from Romero (2019, https://doi.org/10.1029/2019gl083408). We evaluate the accuracy of the sea state dependent gas transfer parameterization against available measurements of CO2 gas transfer velocity from 9 data sets (11 research cruises, see Yang et al. (2022, https://doi.org/10.3389/fmars.2022.826421)). The sea state dependent parameterization for CO2 gas transfer velocity is consistent with observations, while the traditional wind-only parameterization used in most global models slightly underestimates the observations of gas transfer velocity. We produce a climatology of the sea state dependent gas transfer velocity using reanalysis wind and wave data spanning 1980–2017. The climatology shows that the enhanced gas transfer velocity occurs frequently in regions with developed sea states (with strong wave breaking and high significant wave height). The present study provides a general sea state dependent parameterization for gas transfer, which can be implemented in global coupled models.
AB - Wave breaking induced bubbles contribute a significant part of air-sea gas fluxes. Recent modeling of the sea state dependent CO2 flux found that bubbles contribute up to ∼40% of the total CO2 air-sea fluxes (Reichl & Deike, 2020, https://doi.org/10.1029/2020gl087267). In this study, we implement the sea state dependent bubble gas transfer formulation of Deike and Melville (2018, https://doi.org/10.1029/2018gl078758) into a spectral wave model (WAVEWATCH III) incorporating the spectral modeling of the wave breaking distribution from Romero (2019, https://doi.org/10.1029/2019gl083408). We evaluate the accuracy of the sea state dependent gas transfer parameterization against available measurements of CO2 gas transfer velocity from 9 data sets (11 research cruises, see Yang et al. (2022, https://doi.org/10.3389/fmars.2022.826421)). The sea state dependent parameterization for CO2 gas transfer velocity is consistent with observations, while the traditional wind-only parameterization used in most global models slightly underestimates the observations of gas transfer velocity. We produce a climatology of the sea state dependent gas transfer velocity using reanalysis wind and wave data spanning 1980–2017. The climatology shows that the enhanced gas transfer velocity occurs frequently in regions with developed sea states (with strong wave breaking and high significant wave height). The present study provides a general sea state dependent parameterization for gas transfer, which can be implemented in global coupled models.
KW - air-sea interaction
KW - gas transfer velocity
KW - sea state dependence
KW - wave breaking
UR - http://www.scopus.com/inward/record.url?scp=85176383027&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85176383027&partnerID=8YFLogxK
U2 - 10.1029/2023EA003237
DO - 10.1029/2023EA003237
M3 - Article
AN - SCOPUS:85176383027
SN - 2333-5084
VL - 10
JO - Earth and Space Science
JF - Earth and Space Science
IS - 11
M1 - e2023EA003237
ER -