TY - JOUR
T1 - A scaling theory for horizontally homogeneous, baroclinically unstable flow on a beta plane
AU - Held, Isaac M.
AU - Larichev, Vitaly D.
PY - 1996/4/1
Y1 - 1996/4/1
N2 - The scaling argument developed by the authors in a previous work for eddy amplitudes and fluxes in a horizontally homogeneous, two-layer model on an f plane is extended to a β plane. In terms of the nondimensional number ξ = U/(βλ2), where λ is the deformation radius and U is the mean thermal wind, the result for the rms eddy velocity V, the characteristic wavenumber of the energy-containing eddies and of the eddy-driven jets kj, and the magnitude of the eddy diffusivity for potential vorticity D, in the limit ξ ≫ 1, are as follows: V/U ≈ξ, kiλ ≈ -1, D/(Uλ) ≈ ξ2. Numerical simulations provide qualitative support for this scaling but suggest that it underestimates the sensitivity of these eddy statistics to the value of ξ. A generalization that is applicable to continuous stratification is suggested that leads to the estimates V ≈ (βT2)-1, kj ≈ βT, D ≈ (β2T3) 1, where T is a timescale determined by the environment; in particular, it equals λU-1 in the two-layer model and N(f∂zU)-1 in a continuous flow with uniform shear and stratification. This same scaling has also been suggested as relevant to a continuously stratified fluid in the opposite limit, ξ ≪ 1. Therefore, the authors suggest that it may be of general relevance in planetary atmospheres and in the oceans.
AB - The scaling argument developed by the authors in a previous work for eddy amplitudes and fluxes in a horizontally homogeneous, two-layer model on an f plane is extended to a β plane. In terms of the nondimensional number ξ = U/(βλ2), where λ is the deformation radius and U is the mean thermal wind, the result for the rms eddy velocity V, the characteristic wavenumber of the energy-containing eddies and of the eddy-driven jets kj, and the magnitude of the eddy diffusivity for potential vorticity D, in the limit ξ ≫ 1, are as follows: V/U ≈ξ, kiλ ≈ -1, D/(Uλ) ≈ ξ2. Numerical simulations provide qualitative support for this scaling but suggest that it underestimates the sensitivity of these eddy statistics to the value of ξ. A generalization that is applicable to continuous stratification is suggested that leads to the estimates V ≈ (βT2)-1, kj ≈ βT, D ≈ (β2T3) 1, where T is a timescale determined by the environment; in particular, it equals λU-1 in the two-layer model and N(f∂zU)-1 in a continuous flow with uniform shear and stratification. This same scaling has also been suggested as relevant to a continuously stratified fluid in the opposite limit, ξ ≪ 1. Therefore, the authors suggest that it may be of general relevance in planetary atmospheres and in the oceans.
UR - http://www.scopus.com/inward/record.url?scp=0030468990&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0030468990&partnerID=8YFLogxK
U2 - 10.1175/1520-0469(1996)053<0946:astfhh>2.0.co;2
DO - 10.1175/1520-0469(1996)053<0946:astfhh>2.0.co;2
M3 - Article
AN - SCOPUS:0030468990
SN - 0022-4928
VL - 53
SP - 946
EP - 963
JO - Journal of the Atmospheric Sciences
JF - Journal of the Atmospheric Sciences
IS - 7
ER -