Abstract
We study the problem of multi-agent control of a dynamical system with known dynamics and adversarial disturbances. Our study focuses on optimal control without centralized precomputed policies, but rather with adaptive control policies for the different agents that are only equipped with a stabilizing controller. We give a reduction from any (standard) regret minimizing control method to a distributed algorithm. The reduction guarantees that the resulting distributed algorithm has low regret relative to the optimal precomputed joint policy. Our methodology involves generalizing online convex optimization to a multi-agent setting and applying recent tools from nonstochastic control derived for a single agent. We empirically evaluate our method on a model of an overactuated aircraft. We show that the distributed method is robust to failure and to adversarial perturbations in the dynamics.
Original language | English (US) |
---|---|
Pages (from-to) | 7422-7434 |
Number of pages | 13 |
Journal | Proceedings of Machine Learning Research |
Volume | 162 |
State | Published - 2022 |
Externally published | Yes |
Event | 39th International Conference on Machine Learning, ICML 2022 - Baltimore, United States Duration: Jul 17 2022 → Jul 23 2022 |
All Science Journal Classification (ASJC) codes
- Artificial Intelligence
- Software
- Control and Systems Engineering
- Statistics and Probability