Abstract
Let G be a directed graph containing n vertices, one of which is a distinguished source s, and m edges, each with a non‐negative cost. We consider the problem of finding, for each possible sink vertex v, a pair of edge‐disjoint paths from s to v of minimum total edge cost. Suurballe has given an O(n2 logn)‐time algorithm for this problem. We give an implementation of Suurballe's algorithm that runs in O(m log(1+ m/n)n) time and O(m) space. Our algorithm builds an implicit representation of the n pairs of paths; given this representation, the time necessary to explicitly construct the pair of paths for any given sink is O(1) per edge on the paths.
Original language | English (US) |
---|---|
Pages (from-to) | 325-336 |
Number of pages | 12 |
Journal | Networks |
Volume | 14 |
Issue number | 2 |
DOIs | |
State | Published - 1984 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Information Systems
- Computer Networks and Communications