TY - GEN

T1 - A quantitative Gibbard-Satterthwaite theorem without neutrality

AU - Mossel, Elchanan

AU - Rácz, Miklós Z.

N1 - Copyright:
Copyright 2012 Elsevier B.V., All rights reserved.

PY - 2012

Y1 - 2012

N2 - Recently, quantitative versions of the Gibbard-Satterthwaite theorem were proven for k=3 alternatives by Friedgut, Kalai, Keller and Nisan and for neutral functions on k ≥ 4 alternatives by Isaksson, Kindler and Mossel. In the present paper we prove a quantitative version of the Gibbard-Satterthwaite theorem for general social choice functions for any number k ≥ 3 of alternatives. In particular we show that for a social choice function f on k ≥ 3 alternatives and n voters, which is ε-far from the family of nonmanipulable functions, a uniformly chosen voter profile is manipulable with probability at least inverse polynomial in n, k, and ε -1. Removing the neutrality assumption of previous theorems is important for multiple reasons. For one, it is known that there is a conflict between anonymity and neutrality, and since most common voting rules are anonymous, they cannot always be neutral. Second, virtual elections are used in many applications in artificial intelligence, where there are often restrictions on the outcome of the election, and so neutrality is not a natural assumption in these situations. Ours is a unified proof which in particular covers all previous cases established before. The proof crucially uses reverse hypercontractivity in addition to several ideas from the two previous proofs. Much of the work is devoted to understanding functions of a single voter, and in particular we also prove a quantitative Gibbard-Satterthwaite theorem for one voter.

AB - Recently, quantitative versions of the Gibbard-Satterthwaite theorem were proven for k=3 alternatives by Friedgut, Kalai, Keller and Nisan and for neutral functions on k ≥ 4 alternatives by Isaksson, Kindler and Mossel. In the present paper we prove a quantitative version of the Gibbard-Satterthwaite theorem for general social choice functions for any number k ≥ 3 of alternatives. In particular we show that for a social choice function f on k ≥ 3 alternatives and n voters, which is ε-far from the family of nonmanipulable functions, a uniformly chosen voter profile is manipulable with probability at least inverse polynomial in n, k, and ε -1. Removing the neutrality assumption of previous theorems is important for multiple reasons. For one, it is known that there is a conflict between anonymity and neutrality, and since most common voting rules are anonymous, they cannot always be neutral. Second, virtual elections are used in many applications in artificial intelligence, where there are often restrictions on the outcome of the election, and so neutrality is not a natural assumption in these situations. Ours is a unified proof which in particular covers all previous cases established before. The proof crucially uses reverse hypercontractivity in addition to several ideas from the two previous proofs. Much of the work is devoted to understanding functions of a single voter, and in particular we also prove a quantitative Gibbard-Satterthwaite theorem for one voter.

KW - computational social choice

KW - gibbard-satterthwaite

KW - isoperimetric inequalities

KW - manipulation

KW - reverse hypercontractivity

KW - voting

UR - http://www.scopus.com/inward/record.url?scp=84862602749&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84862602749&partnerID=8YFLogxK

U2 - 10.1145/2213977.2214071

DO - 10.1145/2213977.2214071

M3 - Conference contribution

AN - SCOPUS:84862602749

SN - 9781450312455

T3 - Proceedings of the Annual ACM Symposium on Theory of Computing

SP - 1041

EP - 1060

BT - STOC '12 - Proceedings of the 2012 ACM Symposium on Theory of Computing

T2 - 44th Annual ACM Symposium on Theory of Computing, STOC '12

Y2 - 19 May 2012 through 22 May 2012

ER -