A provably sound TAL for back-end optimization

Juan Chen, Dinghao Wu, Andrew W. Appel, Hai Fang

Research output: Contribution to conferencePaperpeer-review

21 Scopus citations


Typed assembly languages provide a way to generate machine checkable safety proofs for machine-language programs. But the soundness proofs of most existing typed assembly languages are hand-written and cannot be machine-checked, which is worrisome for such large calculi. We have designed and implemented a low-level typed assembly language (LTAL) with a semantic model and established its soundness from the model. Compared to existing typed assembly languages, LTAL is more scalable and more secure; it has no macro instructions that hinder low-level optimizations such as instruction scheduling; its type constructors are expressive enough to capture dataflow information, support the compiler's choice of data representations and permit typed position-independent code; and its type-checking algorithm is completely syntax-directed. We have built a prototype system, based on Standard ML of New Jersey, that compiles most of core ML to Sparc code. We explain how we were able to make the untyped back end in SML/NJ preserve types during instruction selection and register allocation, without restricting low-level optimizations and without knowledge of any type system pervading the instruction selector and register allocator.

Original languageEnglish (US)
Number of pages12
StatePublished - 2003
EventACM SIGPLAN Conference on Programming Language Design and Implementation - San Diego, CA, United States
Duration: Jun 9 2003Jun 11 2003


OtherACM SIGPLAN Conference on Programming Language Design and Implementation
Country/TerritoryUnited States
CitySan Diego, CA

All Science Journal Classification (ASJC) codes

  • Software


  • Proof-Carrying Code
  • Typed Assembly Language


Dive into the research topics of 'A provably sound TAL for back-end optimization'. Together they form a unique fingerprint.

Cite this