A Priori Estimates of the Generalization Error for Autoencoders

Zehao Don, E. Weinan, Chao Ma

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Autoencoder is a machine learning model which aims for dimensionality reduction, by reconstructing its input through a bottleneck with lower dimension than the input. It is among the most popular models used in unsupervised learning and semi-supervised learning. In this paper, we build theoretical understanding about autoencoders. Specifically, assuming the existence of the underlying groundtruth encoder and decoder, we establish a priori estimates of the generalization error for autoencoders when an appropriately chosen regularization term is applied. The estimate is a priori in the sense that it only depend on some norms of the groundtruth encoder and decoder, but not the model parameters. The bound acheives nearly optimal rates with respect to the number of data and parameters. To our knowledge, this is the first try to build a priori estimates to unsupervised learning models. Numerical experiments show the tightness of the bounds.

Original languageEnglish (US)
Title of host publication2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3327-3331
Number of pages5
ISBN (Electronic)9781509066315
DOIs
StatePublished - May 2020
Event2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Barcelona, Spain
Duration: May 4 2020May 8 2020

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2020-May
ISSN (Print)1520-6149

Conference

Conference2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020
Country/TerritorySpain
CityBarcelona
Period5/4/205/8/20

All Science Journal Classification (ASJC) codes

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Keywords

  • Generalization bound
  • a priori estimate
  • autoencoder
  • path norm

Fingerprint

Dive into the research topics of 'A Priori Estimates of the Generalization Error for Autoencoders'. Together they form a unique fingerprint.

Cite this