A pressure-induced topological phase with large Berry curvature in Pb1-xSnxTe

Tian Liang, Satya Kushwaha, Jinwoong Kim, Quinn Gibson, Jingjing Lin, Nicholas Kioussis, Robert J. Cava, N. Phuan Ong

Research output: Contribution to journalArticlepeer-review

27 Scopus citations

Abstract

The picture of how a gap closes in a semiconductor has been radically transformed by topological concepts. Instead of the gap closing and immediately reopening, topological arguments predict that, in the absence of inversion symmetry, a metallic phase protected by Weyl nodes persists over a finite interval of the tuning parameter (for example, pressure P). The gap reappears when the Weyl nodes mutually annihilate. We report evidence that Pb1-xSnxTe exhibits this topological metallic phase. Using pressure to tune the gap, we have tracked the nucleation of a Fermi surface droplet that rapidly grows in volume with P. In the metallic state, we observe a large Berry curvature, which dominates the Hall effect. Moreover, a giant negative magnetoresistance is observed in the insulating side of phase boundaries, in accord with ab initio calculations. The results confirm the existence of a topological metallic phase over a finite pressure interval.

Original languageEnglish (US)
Article numbere1602510
JournalScience Advances
Volume3
Issue number5
DOIs
StatePublished - May 2017

All Science Journal Classification (ASJC) codes

  • General

Fingerprint Dive into the research topics of 'A pressure-induced topological phase with large Berry curvature in Pb<sub>1-x</sub>Sn<sub>x</sub>Te'. Together they form a unique fingerprint.

Cite this