Abstract
Level set-based topology optimization methods have received increased attention in the last decade due to the ease with which they can handle topology changes by splitting and merging boundaries. However, most implementations are limited to box-like design domains and cannot easily handle irregular domains that are common in practical engineering applications. In this paper, a modified level set model, which is parameterized and updated with radial basis functions (RBFs), is introduced to solve topology optimization problems in complex design domains. Because RBFs are not necessarily located in a structured manner, the parametrized level set method can be combined effortlessly with unstructured polygonal finite element meshes to easily handle complex design domains and also achieve the high accuracy characteristic of polygonal discretizations. Furthermore, the nucleation capability of the proposed approach along with an approximate reinitialization is shown to obtain more flexible topology changes of the optimal design, and smooth boundaries can be obtained without introducing smoothing scheme. Several numerical examples illustrate the effectiveness of the proposed model.
Original language | English (US) |
---|---|
Pages (from-to) | 1913-1928 |
Number of pages | 16 |
Journal | Structural and Multidisciplinary Optimization |
Volume | 61 |
Issue number | 5 |
DOIs | |
State | Published - May 1 2020 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Software
- Control and Systems Engineering
- Computer Science Applications
- Computer Graphics and Computer-Aided Design
- Control and Optimization
Keywords
- Parameterized level set method
- Polygonal finite elements
- Radial basis functions
- Topology optimization