TY - GEN
T1 - A One-Query Lower Bound for Unitary Synthesis and Breaking Quantum Cryptography
AU - Lombardi, Alex
AU - Ma, Fermi
AU - Wright, John
N1 - Publisher Copyright:
© 2024 Owner/Author.
PY - 2024/6/10
Y1 - 2024/6/10
N2 - The Unitary Synthesis Problem (Aaronson-Kuperberg 2007) asks whether any n-qubit unitary U can be implemented by an efficient quantum algorithm A augmented with an oracle that computes an arbitrary Boolean function f. In other words, can the task of implementing any unitary be efficiently reduced to the task of implementing any Boolean function? In this work, we prove a one-query lower bound for unitary synthesis. We show that there exist unitaries U such that no quantum polynomial-time oracle algorithm Af can implement U, even approximately, if it only makes one (quantum) query to f. Our approach also has implications for quantum cryptography: we prove (relative to a random oracle) the existence of quantum cryptographic primitives that remain secure against all one-query adversaries Af. Since such one-query algorithms can decide any language, solve any classical search problem, and even prepare any quantum state, our result suggests that implementing random unitaries and breaking quantum cryptography may be harder than all of these tasks. To prove this result, we formulate unitary synthesis as an efficient challenger-adversary game, which enables proving lower bounds by analyzing the maximum success probability of an adversary Af. Our main technical insight is to identify a natural spectral relaxation of the one-query optimization problem, which we bound using tools from random matrix theory. We view our framework as a potential avenue to rule out polynomial-query unitary synthesis, and we state conjectures in this direction.
AB - The Unitary Synthesis Problem (Aaronson-Kuperberg 2007) asks whether any n-qubit unitary U can be implemented by an efficient quantum algorithm A augmented with an oracle that computes an arbitrary Boolean function f. In other words, can the task of implementing any unitary be efficiently reduced to the task of implementing any Boolean function? In this work, we prove a one-query lower bound for unitary synthesis. We show that there exist unitaries U such that no quantum polynomial-time oracle algorithm Af can implement U, even approximately, if it only makes one (quantum) query to f. Our approach also has implications for quantum cryptography: we prove (relative to a random oracle) the existence of quantum cryptographic primitives that remain secure against all one-query adversaries Af. Since such one-query algorithms can decide any language, solve any classical search problem, and even prepare any quantum state, our result suggests that implementing random unitaries and breaking quantum cryptography may be harder than all of these tasks. To prove this result, we formulate unitary synthesis as an efficient challenger-adversary game, which enables proving lower bounds by analyzing the maximum success probability of an adversary Af. Our main technical insight is to identify a natural spectral relaxation of the one-query optimization problem, which we bound using tools from random matrix theory. We view our framework as a potential avenue to rule out polynomial-query unitary synthesis, and we state conjectures in this direction.
KW - Pseudorandom States
KW - Quantum Cryptography
KW - Quantum Query Complexity
KW - Unitary Synthesis
UR - http://www.scopus.com/inward/record.url?scp=85196669226&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85196669226&partnerID=8YFLogxK
U2 - 10.1145/3618260.3649650
DO - 10.1145/3618260.3649650
M3 - Conference contribution
AN - SCOPUS:85196669226
T3 - Proceedings of the Annual ACM Symposium on Theory of Computing
SP - 979
EP - 990
BT - STOC 2024 - Proceedings of the 56th Annual ACM Symposium on Theory of Computing
A2 - Mohar, Bojan
A2 - Shinkar, Igor
A2 - O�Donnell, Ryan
PB - Association for Computing Machinery
T2 - 56th Annual ACM Symposium on Theory of Computing, STOC 2024
Y2 - 24 June 2024 through 28 June 2024
ER -