A novel wideband spectrum sensing system for distributed cognitive radio networks

Hongjian Sun, Arumugam Nallanathan, Jing Jiang, David I. Laurenson, Cheng Xiang Wang, H. Vincent Poor

Research output: Chapter in Book/Report/Conference proceedingConference contribution

11 Scopus citations

Abstract

A significant challenge of cognitive radio (CR) is to perform wideband spectrum sensing in a fading environment. In this paper, a novel multi-rate sub-Nyquist spectrum detection(MSSD) system is introduced for cooperative wideband spectrum sensing in a distributed CR network. Using only a few sub- Nyquist samples, MSSD is able to sense the wideband spectrum without full spectrum recovery. Specifically, given the low spectral occupancy, sub-Nyquist sampling is performed in each sampling channel and a test statistic is formed by using sub-Nyquist samples from multiple sampling channels. Furthermore, the use of different sub-Nyquist sampling rates is proposed to improve the system detection performance, and the performance of MSSD over both non-fading and Rayleigh fading channels is analyzed. Numerical results show that MSSD can considerably improve the wideband spectrum sensing performance in a fading scenario, with a relatively low implementation complexity and a low computational complexity.

Original languageEnglish (US)
Title of host publication2011 IEEE Global Telecommunications Conference, GLOBECOM 2011
DOIs
StatePublished - 2011
Event54th Annual IEEE Global Telecommunications Conference: "Energizing Global Communications", GLOBECOM 2011 - Houston, TX, United States
Duration: Dec 5 2011Dec 9 2011

Publication series

NameGLOBECOM - IEEE Global Telecommunications Conference

Other

Other54th Annual IEEE Global Telecommunications Conference: "Energizing Global Communications", GLOBECOM 2011
Country/TerritoryUnited States
CityHouston, TX
Period12/5/1112/9/11

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'A novel wideband spectrum sensing system for distributed cognitive radio networks'. Together they form a unique fingerprint.

Cite this