A Note on General Sliding Window Processes

Noga Alon, Ohad N. Feldheim

Research output: Contribution to journalArticlepeer-review

5 Scopus citations


Let f: Rk→[r] = {1, 2,…,r} be a measurable function, and let {Ui}i∈N be a sequence of i.i.d. random variables. Consider the random process {Zi}i∈N defined by Zi = f(Ui,…,Ui+k-1). We show that for all q, there is a positive probability, uniform in f, that Z1 = Z2 = … = Zq. A continuous counterpart is that if f: Rk → R, and Ui and Zi are as before, then there is a positive probability, uniform in f, for Z1,…,Zq to be monotone. We prove these theorems, give upper and lower bounds for this probability, and generalize to variables indexed on other lattices. The proof is based on an application of combinatorial results from Ramsey theory to the realm of continuous probability.

Original languageEnglish (US)
JournalElectronic Communications in Probability
StatePublished - Sep 22 2014
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Statistics and Probability
  • Statistics, Probability and Uncertainty


  • D-dependent
  • De Bruijn
  • K-factor
  • Ramsey


Dive into the research topics of 'A Note on General Sliding Window Processes'. Together they form a unique fingerprint.

Cite this