TY - JOUR
T1 - A Nonlocal Magneto-curvature Instability in a Differentially Rotating Disk
AU - Ebrahimi, Fatima
AU - Pharr, Matthew
N1 - Publisher Copyright:
© 2022. The Author(s). Published by the American Astronomical Society.
PY - 2022/9/1
Y1 - 2022/9/1
N2 - A global mode is shown to be unstable to nonaxisymmetric perturbations in a differentially rotating Keplerian disk containing either vertical or azimuthal magnetic fields. In an unstratified cylindrical disk model, using both global eigenvalue stability analysis and linear global initial-value simulations, it is demonstrated that this instability dominates at strong magnetic fields where local standard magnetorotational instability (MRI) becomes stable. Unlike the standard MRI mode, which is concentrated in the high flow shear region, these distinct global modes (with low azimuthal mode numbers) are extended in the global domain and are Alfvén-continuum-driven unstable modes. As its mode structure and relative dominance over MRI are inherently determined by the global spatial curvature as well as the flow shear in the presence of a magnetic field, we call it the magneto-curvature (magneto-spatial-curvature) instability. Consistent with the linear analysis, as the field strength is increased in the nonlinear simulations, a transition from MRI-driven turbulence to a state dominated by global nonaxisymmetric modes is obtained. This global instability could therefore be a source of nonlinear transport in accretion disks at a higher magnetic field than predicted by local models.
AB - A global mode is shown to be unstable to nonaxisymmetric perturbations in a differentially rotating Keplerian disk containing either vertical or azimuthal magnetic fields. In an unstratified cylindrical disk model, using both global eigenvalue stability analysis and linear global initial-value simulations, it is demonstrated that this instability dominates at strong magnetic fields where local standard magnetorotational instability (MRI) becomes stable. Unlike the standard MRI mode, which is concentrated in the high flow shear region, these distinct global modes (with low azimuthal mode numbers) are extended in the global domain and are Alfvén-continuum-driven unstable modes. As its mode structure and relative dominance over MRI are inherently determined by the global spatial curvature as well as the flow shear in the presence of a magnetic field, we call it the magneto-curvature (magneto-spatial-curvature) instability. Consistent with the linear analysis, as the field strength is increased in the nonlinear simulations, a transition from MRI-driven turbulence to a state dominated by global nonaxisymmetric modes is obtained. This global instability could therefore be a source of nonlinear transport in accretion disks at a higher magnetic field than predicted by local models.
UR - https://www.scopus.com/pages/publications/85138147471
UR - https://www.scopus.com/inward/citedby.url?scp=85138147471&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/ac892d
DO - 10.3847/1538-4357/ac892d
M3 - Article
AN - SCOPUS:85138147471
SN - 0004-637X
VL - 936
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 2
M1 - 145
ER -