A nonconvex optimization framework for low rank matrix estimation

Tuo Zhao, Zhaoran Wang, Han Liu

Research output: Contribution to journalConference articlepeer-review

98 Scopus citations

Abstract

We study the estimation of low rank matrices via nonconvex optimization. Compared with convex relaxation, nonconvex optimization exhibits superior empirical performance for large scale instances of low rank matrix estimation. However, the understanding of its theoretical guarantees are limited. In this paper, we define the notion of projected oracle divergence based on which we establish sufficient conditions for the success of nonconvex optimization. We illustrate the consequences of this general framework for matrix sensing. In particular, we prove that a broad class of nonconvex optimization algorithms, including alternating minimization and gradient-type methods, geometrically converge to the global optimum and exactly recover the true low rank matrices under standard conditions.

Original languageEnglish (US)
Pages (from-to)559-567
Number of pages9
JournalAdvances in Neural Information Processing Systems
Volume2015-January
StatePublished - 2015
Event29th Annual Conference on Neural Information Processing Systems, NIPS 2015 - Montreal, Canada
Duration: Dec 7 2015Dec 12 2015

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'A nonconvex optimization framework for low rank matrix estimation'. Together they form a unique fingerprint.

Cite this