TY - JOUR
T1 - A new open-path eddy covariance method for nitrous oxide and other trace gases that minimizes temperature corrections
AU - Pan, Da
AU - Gelfand, Ilya
AU - Tao, Lei
AU - Abraha, Michael
AU - Sun, Kang
AU - Guo, Xuehui
AU - Chen, Jiquan
AU - Robertson, G. Philip
AU - Zondlo, Mark A.
N1 - Publisher Copyright:
© 2021 The Authors. Global Change Biology published by John Wiley & Sons Ltd
PY - 2022/2
Y1 - 2022/2
N2 - Low-power, open-path gas sensors enable eddy covariance (EC) flux measurements in remote areas without line power. However, open-path flux measurements are sensitive to fluctuations in air temperature, pressure, and humidity. Laser-based, open-path sensors with the needed sensitivity for trace gases like methane (CH4) and nitrous oxide (N2O) are impacted by additional spectroscopic effects. Corrections for these effects, especially those related to temperature fluctuations, often exceed the flux of gases, leading to large uncertainties in the associated fluxes. For example, the density and spectroscopic corrections arising from temperature fluctuations can be one or two orders of magnitude greater than background N2O fluxes. Consequently, measuring background fluxes with laser-based, open-path sensors is extremely challenging, particularly for N2O and gases with similar high-precision requirements. We demonstrate a new laser-based, open-path N2O sensor and a general approach applicable to other gases that minimizes temperature-related corrections for EC flux measurements. The method identifies absorption lines with spectroscopic effects in the opposite direction of density effects from temperature and, thus, density and spectroscopic effects nearly cancel one another. The new open-path N2O sensor was tested at a corn (Zea mays L.) field in Southwestern Michigan, United States. The sensor had an optimal precision of 0.1 ppbv at 10 Hz and power consumption of 50 W. Field trials showed that temperature-related corrections were 6% of density corrections, reducing EC random errors by 20-fold compared to previously examined lines. Measured open-path N2O EC fluxes showed excellent agreement with those made with static chambers (m = 1.0 ± 0.3; r2 =.96). More generally, we identified absorption lines for CO2 and CH4 flux measurements that can reduce the temperature-related corrections by 10–100 times compared to existing open-path sensors. The proposed method provides a new direction for future open-path sensors, facilitating the expansion of accurate EC flux measurements.
AB - Low-power, open-path gas sensors enable eddy covariance (EC) flux measurements in remote areas without line power. However, open-path flux measurements are sensitive to fluctuations in air temperature, pressure, and humidity. Laser-based, open-path sensors with the needed sensitivity for trace gases like methane (CH4) and nitrous oxide (N2O) are impacted by additional spectroscopic effects. Corrections for these effects, especially those related to temperature fluctuations, often exceed the flux of gases, leading to large uncertainties in the associated fluxes. For example, the density and spectroscopic corrections arising from temperature fluctuations can be one or two orders of magnitude greater than background N2O fluxes. Consequently, measuring background fluxes with laser-based, open-path sensors is extremely challenging, particularly for N2O and gases with similar high-precision requirements. We demonstrate a new laser-based, open-path N2O sensor and a general approach applicable to other gases that minimizes temperature-related corrections for EC flux measurements. The method identifies absorption lines with spectroscopic effects in the opposite direction of density effects from temperature and, thus, density and spectroscopic effects nearly cancel one another. The new open-path N2O sensor was tested at a corn (Zea mays L.) field in Southwestern Michigan, United States. The sensor had an optimal precision of 0.1 ppbv at 10 Hz and power consumption of 50 W. Field trials showed that temperature-related corrections were 6% of density corrections, reducing EC random errors by 20-fold compared to previously examined lines. Measured open-path N2O EC fluxes showed excellent agreement with those made with static chambers (m = 1.0 ± 0.3; r2 =.96). More generally, we identified absorption lines for CO2 and CH4 flux measurements that can reduce the temperature-related corrections by 10–100 times compared to existing open-path sensors. The proposed method provides a new direction for future open-path sensors, facilitating the expansion of accurate EC flux measurements.
UR - http://www.scopus.com/inward/record.url?scp=85120483827&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85120483827&partnerID=8YFLogxK
U2 - 10.1111/gcb.15986
DO - 10.1111/gcb.15986
M3 - Article
C2 - 34758177
AN - SCOPUS:85120483827
SN - 1354-1013
VL - 28
SP - 1446
EP - 1457
JO - Global Change Biology
JF - Global Change Biology
IS - 4
ER -