TY - JOUR
T1 - A new method for lower bounds of L-functions
AU - Gelbart, Stephen S.
AU - Lapid, Erez M.
AU - Sarnak, Peter
PY - 2004/7/15
Y1 - 2004/7/15
N2 - Let L(s,π,r) be an L-function which appears in the Langlands-Shahidi theory. We give a lower bound for L(s,π, r) when R(s) = 1 using Eisenstein series. This method is applicable even when L(s,π,r) is not known to be absolutely convergent for R(s) > 1.
AB - Let L(s,π,r) be an L-function which appears in the Langlands-Shahidi theory. We give a lower bound for L(s,π, r) when R(s) = 1 using Eisenstein series. This method is applicable even when L(s,π,r) is not known to be absolutely convergent for R(s) > 1.
UR - http://www.scopus.com/inward/record.url?scp=3042734356&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=3042734356&partnerID=8YFLogxK
U2 - 10.1016/j.crma.2004.04.024
DO - 10.1016/j.crma.2004.04.024
M3 - Article
AN - SCOPUS:3042734356
SN - 1631-073X
VL - 339
SP - 91
EP - 94
JO - Comptes Rendus Mathematique
JF - Comptes Rendus Mathematique
IS - 2
ER -