A neural network model of the eriksen task: Reduction, analysis, and data fitting

Yuan Sophie Liu, Philip Holmes, Jonathan D. Cohen

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

We analyze a neural network model of the Eriksen task: a two-alternative forced-choice task in which subjects must correctly identify a central stimulus and disregard flankers that may or may not be compatible with it. We linearize and decouple the model, deriving a reduced drift-diffusion process with variable drift rate that describes the accumulation of net evidence in favor of either alternative, and we use this to analytically describe how accuracy and response time data depend on model parameters. Such analyses both assist parameter tuning in network models and suggest explanations of changing drift rates in terms of attention. We compare our results with numerical simulations of the full nonlinear model and with empirical data and show good fits to both with fewer parameters.

Original languageEnglish (US)
Pages (from-to)345-373
Number of pages29
JournalNeural computation
Volume20
Issue number2
DOIs
StatePublished - Feb 2008

All Science Journal Classification (ASJC) codes

  • Arts and Humanities (miscellaneous)
  • Cognitive Neuroscience

Fingerprint

Dive into the research topics of 'A neural network model of the eriksen task: Reduction, analysis, and data fitting'. Together they form a unique fingerprint.

Cite this