Abstract
The analysis of large-scale data sets using clustering techniques arises in many different disciplines and has important applications. Most traditional clustering techniques require heuristic methods for finding good solutions and produce suboptimal clusters as a result. In this article, we present a rigorous biclustering approach, OREO, which is based on the Optimal RE-Ordering of the rows and columns of a data matrix. The physical permutations of the rows and columns are accomplished via a network flow model according to a given objective function. This optimal re-ordering model is used in an iterative framework where cluster boundaries in one dimension are used to partition and re-order the other dimensions of the corresponding submatrices. The performance of OREO is demonstrated on metabolite concentration data to validate the ability of the proposed method and compare it to existing clustering methods.
Original language | English (US) |
---|---|
Pages (from-to) | 343-354 |
Number of pages | 12 |
Journal | Journal of Global Optimization |
Volume | 47 |
Issue number | 3 |
DOIs | |
State | Published - Jul 2010 |
All Science Journal Classification (ASJC) codes
- Control and Optimization
- Applied Mathematics
- Business, Management and Accounting (miscellaneous)
- Computer Science Applications
- Management Science and Operations Research
Keywords
- Biclustering
- Mixed-integer linear optimization (MILP)