A multiwavelength semiconductor laser

Alessandro Tredicucci, Claire F. Gmachl, Federico Capasso, Deborah L. Sivco, Albert L. Hutchinson, Alfred Y. Cho

Research output: Contribution to journalArticle

87 Scopus citations

Abstract

Many systems, such as atoms and molecules in gas mixtures, dye solutions and some solid-state materials, can exhibit simultaneous laser action at several wavelengths as a result of the excitation of several optical transitions. But semiconductor lasers are usually monochromatic because the electronic levels are distributed in continuous energy bands. In order to achieve simultaneous lasing at several well-separated wavelengths, researchers have proposed combining different semiconductors with distinct bandgap energies in the active material. However, the difficulty of pumping different regions and of absorption of the shorter-wavelength light could be resolved only by using separated multiple resonators or by multisection injection devices. Here we report the realization of a single artificial semiconductor material with distinct optical transitions, which permits simultaneous multiwavelength laser action at mid-infrared wavelengths (6.6, 7.3 and 7.9 μm). This is achieved by tailoring the electronic states and electron relaxation times in the material, which is a superlattice layered structure. The laser has potential applications in sensors for trace-gas analysis.

Original languageEnglish (US)
Pages (from-to)350-353
Number of pages4
JournalNature
Volume396
Issue number6709
DOIs
StatePublished - Nov 26 1998
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General

Fingerprint Dive into the research topics of 'A multiwavelength semiconductor laser'. Together they form a unique fingerprint.

  • Cite this

    Tredicucci, A., Gmachl, C. F., Capasso, F., Sivco, D. L., Hutchinson, A. L., & Cho, A. Y. (1998). A multiwavelength semiconductor laser. Nature, 396(6709), 350-353. https://doi.org/10.1038/24585