Abstract
A "modified" variant of the Weierstrass sigma, zeta, and elliptic functions is proposed whereby the zeta function is redefined by ζ(z) ζ(z) ≡ ζ(z)-γ2z, where γ2 is a lattice invariant related to the almost-holomorphic modular invariant of the quasi-modular-invariant weight-2 Eisenstein series. If ωi is a primitive half-period, ζ (ωi) = πωi/A, where A is the area of the primitive cell of the lattice. The quasiperiodicity of the modified sigma function is much simpler than that of the original, and it becomes the building-block for the modular-invariant formulation of lowest-Landau-level wavefunctions on the torus. It is suggested that the "modified" sigma function is more natural than the original Weierstrass form, which was formulated before quasi-modular forms were understood. For the high-symmetry (square and hexagonal) lattices, the modified and original sigma functions coincide.
Original language | English (US) |
---|---|
Article number | 071901 |
Journal | Journal of Mathematical Physics |
Volume | 59 |
Issue number | 7 |
DOIs | |
State | Published - Jul 1 2018 |
All Science Journal Classification (ASJC) codes
- Statistical and Nonlinear Physics
- Mathematical Physics