TY - JOUR
T1 - A model of autonomous interactions between hippocampus and neocortex driving sleep-dependent memory consolidation
AU - Singh, Dhairyya
AU - Norman, Kenneth A.
AU - Schapiro, Anna C.
N1 - Publisher Copyright:
Copyright © 2022 the Author(s). Published by PNAS.
PY - 2022/11/1
Y1 - 2022/11/1
N2 - How do we build up our knowledge of the world over time? Many theories of memory formation and consolidation have posited that the hippocampus stores new information, then “teaches” this information to the neocortex over time, especially during sleep. But it is unclear, mechanistically, how this actually works—How are these systems able to interact during periods with virtually no environmental input to accomplish useful learning and shifts in representation? We provide a framework for thinking about this question, with neural network model simulations serving as demonstrations. The model is composed of hippocampus and neocortical areas, which replay memories and interact with one another completely autonomously during simulated sleep. Oscillations are leveraged to support error-driven learning that leads to useful changes in memory representation and behavior. The model has a non–rapid eye movement (NREM) sleep stage, where dynamics between the hippocampus and neocortex are tightly coupled, with the hippocampus helping neocortex to reinstate high-fidelity versions of new attractors, and a REM sleep stage, where neocortex is able to more freely explore existing attractors. We find that alternating between NREM and REM sleep stages, which alternately focuses the model’s replay on recent and remote information, facilitates graceful continual learning. We thus provide an account of how the hippocampus and neocortex can interact without any external input during sleep to drive useful new cortical learning and to protect old knowledge as new information is integrated.
AB - How do we build up our knowledge of the world over time? Many theories of memory formation and consolidation have posited that the hippocampus stores new information, then “teaches” this information to the neocortex over time, especially during sleep. But it is unclear, mechanistically, how this actually works—How are these systems able to interact during periods with virtually no environmental input to accomplish useful learning and shifts in representation? We provide a framework for thinking about this question, with neural network model simulations serving as demonstrations. The model is composed of hippocampus and neocortical areas, which replay memories and interact with one another completely autonomously during simulated sleep. Oscillations are leveraged to support error-driven learning that leads to useful changes in memory representation and behavior. The model has a non–rapid eye movement (NREM) sleep stage, where dynamics between the hippocampus and neocortex are tightly coupled, with the hippocampus helping neocortex to reinstate high-fidelity versions of new attractors, and a REM sleep stage, where neocortex is able to more freely explore existing attractors. We find that alternating between NREM and REM sleep stages, which alternately focuses the model’s replay on recent and remote information, facilitates graceful continual learning. We thus provide an account of how the hippocampus and neocortex can interact without any external input during sleep to drive useful new cortical learning and to protect old knowledge as new information is integrated.
KW - continual learning
KW - neural network model
KW - oscillations
KW - sleep stages
UR - http://www.scopus.com/inward/record.url?scp=85140567800&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85140567800&partnerID=8YFLogxK
U2 - 10.1073/pnas.2123432119
DO - 10.1073/pnas.2123432119
M3 - Article
C2 - 36279437
AN - SCOPUS:85140567800
SN - 0027-8424
VL - 119
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 44
M1 - e2123432119
ER -