Abstract
Magnetic reconnection in a current sheet converts magnetic energy into particle energy, a process that is important in many laboratory1, space2,3 and astrophysical contexts4-6. It is not known at present whether reconnection is fundamentally a process that can occur over an extended region in space or whether it is patchy and unpredictable in nature7. Frequent reports of small-scale flux ropes and flow channels associated with reconnection8-13 in the Earth's magnetosphere raise the possibility that reconnection is intrinsically patchy, with each reconnection X-line (the line along which oppositely directed magnetic field lines reconnect) extending at most a few Earth radii (RE), even though the associated current sheets span many tens or hundreds of R E. Here we report three-spacecraft observations of accelerated flow associated with reconnection in a current sheet embedded in the solar wind flow, where the reconnection X-line extended at least 390RE (or 2.5 × 106 km). Observations of this and 27 similar events imply that reconnection is fundamentally a large-scale process. Patchy reconnection observed in the Earth's magnetosphere is therefore likely to be a geophysical effect associated with fluctuating boundary conditions, rather than a fundamental property of reconnection. Our observations also reveal, surprisingly, that reconnection can operate in a quasi-steady-state manner even when undriven by the external flow.
Original language | English (US) |
---|---|
Pages (from-to) | 175-178 |
Number of pages | 4 |
Journal | Nature |
Volume | 439 |
Issue number | 7073 |
DOIs | |
State | Published - Jan 12 2006 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- General