TY - JOUR
T1 - A lower bound for radio broadcast
AU - Alon, Noga
AU - Bar-Noy, Amotz
AU - Linial, Nathan
AU - Pelegi, David
N1 - Funding Information:
* Supported in part by an Allon Fellowship, by a Bat-Sheva de Rothschild Grant, and by a Bergmann Memorial Grant. + Supported in part by a Weizmann Fellowship and by Contract ONR NOOOl4-85-C-0731. Current address: IBM, T. J. Watson Research Center, Yorktown Heights, NY 10598. : Supported in part by Contract ONR NOOOl4-85-C-0731. Current address: The Weizmann Institute, Rehovot 76100, Israel.
PY - 1991/10
Y1 - 1991/10
N2 - A radio network is a synchronous network of processors that communicate by transmitting messages to their neighbors, where a processor receives a message in a given step if and only if it is silent in this step and precisely one of its neighbors transmits. In this paper we prove the existence of a family of radius-2 networks on n vertices for which any broadcast schedule requires at least Ω(log2 n) rounds of transmissions. This matches an upper bound of O(log2 n) rounds for networks of radius 2 proved earlier by Bar-Yehuda, Goldreich, and Itai, in "Proceedings of the 4th ACM Symposium on Principles of Distributed Computing, 1986," pp. 98-107.
AB - A radio network is a synchronous network of processors that communicate by transmitting messages to their neighbors, where a processor receives a message in a given step if and only if it is silent in this step and precisely one of its neighbors transmits. In this paper we prove the existence of a family of radius-2 networks on n vertices for which any broadcast schedule requires at least Ω(log2 n) rounds of transmissions. This matches an upper bound of O(log2 n) rounds for networks of radius 2 proved earlier by Bar-Yehuda, Goldreich, and Itai, in "Proceedings of the 4th ACM Symposium on Principles of Distributed Computing, 1986," pp. 98-107.
UR - http://www.scopus.com/inward/record.url?scp=0026238585&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0026238585&partnerID=8YFLogxK
U2 - 10.1016/0022-0000(91)90015-W
DO - 10.1016/0022-0000(91)90015-W
M3 - Article
AN - SCOPUS:0026238585
SN - 0022-0000
VL - 43
SP - 290
EP - 298
JO - Journal of Computer and System Sciences
JF - Journal of Computer and System Sciences
IS - 2
ER -