A Low-Power OAM Metasurface for Rank-Deficient Wireless Environments

Kun Woo Cho, Srikar Kasi, Kyle Jamieson

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper presents Monolith, a high bitrate, low-power, metamaterials surface-based Orbital Angular Momentum (OAM) MIMO multiplexing design for rank deficient, free space wireless environments. Leveraging ambient signals as the source of power, Monolith backscatters these ambient signals by modulating them into several orthogonal beams, where each beam carries a unique OAM. We provide insights along the design aspects of a low-power and programmable metamaterials-based surface. Our results show that Monolith achieves an order of magnitude higher channel capacity than traditional spatial MIMO backscattering networks.

Original languageEnglish (US)
Title of host publicationGLOBECOM 2023 - 2023 IEEE Global Communications Conference
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5695-5700
Number of pages6
ISBN (Electronic)9798350310900
DOIs
StatePublished - 2023
Event2023 IEEE Global Communications Conference, GLOBECOM 2023 - Kuala Lumpur, Malaysia
Duration: Dec 4 2023Dec 8 2023

Publication series

NameProceedings - IEEE Global Communications Conference, GLOBECOM
ISSN (Print)2334-0983
ISSN (Electronic)2576-6813

Conference

Conference2023 IEEE Global Communications Conference, GLOBECOM 2023
Country/TerritoryMalaysia
CityKuala Lumpur
Period12/4/2312/8/23

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Computer Networks and Communications
  • Hardware and Architecture
  • Signal Processing

Keywords

  • Orbital angular momentum
  • cellular wireless networks
  • metasurface

Fingerprint

Dive into the research topics of 'A Low-Power OAM Metasurface for Rank-Deficient Wireless Environments'. Together they form a unique fingerprint.

Cite this