A LEED, TPD and HREELS investigation of NO adsorption on Sn/Pt(111) surface alloys

Chen Xu, Bruce E. Koel

Research output: Contribution to journalArticlepeer-review

46 Scopus citations

Abstract

The adsorption of NO on Pt(111), and the (2 × 2)Sn/Pt(111) and (√3 × √3)R30°Sn/Pt(111) surface alloys has been studied using LEED, TPD and HREELS. NO adsorption produces a (2 × 2) LEED pattern on Pt(111) and a (2√3 × 2√3)R30° LEED pattern on the (2 × 2)Sn/Pt(111) surface. The initial sticking coefficient of NO on the (2 × 2)Sn/Pt(111) surface alloy at 100 K is the same as that on Pt(111), S0 = 0.9, while the initial sticking coefficient of NO on the (√3 × √3)R30°Sn/Pt(111) surface decreases to 0.6. The presence of Sn in the surface layer of Pt(111) strongly reduces the binding energy of NO in contrast to the minor effect it has on CO. The binding energy of β-state NO is reduced by 8-10 kcal/mol on the Sn/Pt(111) surface alloys compared to Pt(111). HREELS data for saturation NO coverage on both surface alloys show two vibrational frequencies at 285 and 478 cm-1 in the low frequency range and only one N-O stretching frequency at 1698 cm-1. We assign this NO species as atop, bent-bonded NO. At small NO coverage, a species with a loss at 1455 cm-1 was also observed on the (2 × 2)Sn/ Pt(111) surface alloy, similar to that observed on the Pt(111) surface. However, the atop, bent-bonded NO is the only species observed on the (√3 × √3)R30°Sn/Pt(111) surface alloy at any NO coverage studied.

Original languageEnglish (US)
Pages (from-to)198-208
Number of pages11
JournalSurface Science
Volume310
Issue number1-3
DOIs
StatePublished - May 1 1994
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'A LEED, TPD and HREELS investigation of NO adsorption on Sn/Pt(111) surface alloys'. Together they form a unique fingerprint.

Cite this