A la carte embedding: Cheap but effective induction of semantic feature vectors

Mikhail Khodak, Nikunj Saunshi, Yingyu Liang, Tengyu Ma, Brandon Michael Stewart, Sanjeev Arora

Research output: Chapter in Book/Report/Conference proceedingConference contribution

25 Scopus citations

Abstract

Motivations like domain adaptation, transfer learning, and feature learning have fueled interest in inducing embeddings for rare or unseen words, n-grams, synsets, and other textual features. This paper introduces à la carte embedding, a simple and general alternative to the usual word2vec-based approaches for building such representations that is based upon recent theoretical results for GloVe-like embeddings. Our method relies mainly on a linear transformation that is efficiently learnable using pretrained word vectors and linear regression. This transform is applicable “on the fly” in the future when a new text feature or rare word is encountered, even if only a single usage example is available. We introduce a new dataset showing how the à la carte method requires fewer examples of words in context to learn high-quality embeddings and we obtain state-of-the-art results on a nonce task and some unsupervised document classification tasks.

Original languageEnglish (US)
Title of host publicationACL 2018 - 56th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers)
PublisherAssociation for Computational Linguistics (ACL)
Pages12-22
Number of pages11
ISBN (Electronic)9781948087322
DOIs
StatePublished - 2018
Event56th Annual Meeting of the Association for Computational Linguistics, ACL 2018 - Melbourne, Australia
Duration: Jul 15 2018Jul 20 2018

Publication series

NameACL 2018 - 56th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers)
Volume1

Conference

Conference56th Annual Meeting of the Association for Computational Linguistics, ACL 2018
Country/TerritoryAustralia
CityMelbourne
Period7/15/187/20/18

All Science Journal Classification (ASJC) codes

  • Software
  • Computational Theory and Mathematics

Fingerprint

Dive into the research topics of 'A la carte embedding: Cheap but effective induction of semantic feature vectors'. Together they form a unique fingerprint.

Cite this