TY - GEN
T1 - A jet fuel surrogate formulated by real fuel properties
AU - Dooley, Stephen
AU - Won, Sang Hee
AU - Chaos, Marcos
AU - Heyne, Joshua
AU - Ju, Yiguang
AU - Dryer, Frederick L.
AU - Kumar, Kamal
AU - Sung, Chih Jen
AU - Wang, Haowei
AU - Oehlschlaeger, Matthew A.
AU - Santoro, Robert J.
AU - Litzinger, Thomas A.
N1 - Copyright:
Copyright 2015 Elsevier B.V., All rights reserved.
PY - 2010
Y1 - 2010
N2 - An implicit methodology based on chemical group theory to formulate a jet aviation fuel surrogate by the measurements of several combustion related fuel properties is tested. The empirical formula and derived cetane number of an actual aviation fuel, POSF 4658, have been determined. A three component surrogate fuel for POSF 4658, has been formulated by constraining a mixture of n-decane, iso-octane and toluene to reproduce the hydrogen/carbon ratio and derived cetane number of the target fuel. The validity of the proposed surrogate is evaluated by experimental measurement of select combustion properties of POSF 4658, and the POSF 4658 surrogate; 1) A variable pressure flow reactor has been used to chart the chemical reactivity of stoichiometric mixtures of POSF 4658/O2/N2 and POSF 4658 surrogate/O2/N2 at 12.5 atm and 500-1000K, fixing the carbon content at 0.3% for both mixtures. 2) The high temperature chemical reactivity and chemical kinetic-molecular diffusion coupling of POSF 4658 and POSF 4658 surrogate have been evaluated by measurement of the extinction limits of diffusion flames. 3) The autoignition behavior of POSF 4658 and POSF 4658 surrogate has been measured with a shock tube at 674-1222 K and with a rapid compression machine at 645-714K for stoichiometric mixtures of fuel in air at pressures close to 20 atm. The flow reactor study shows that the character and extent of chemical reactivity of both fuels at low temperature (500-675K) and high temperature (900K+) is extremely similar but differences in the end of the negative temperature coefficient regime between each fuel are observed. The diffusion flame extinction limits of both fuels are observed to be indistinguishable on a molar basis. Ignition delay measurements also show that POSF 4658 exhibits NTC behavior. Moreover, the ignition delays of both fuels are also extremely similar over the temperature range studied between both apparatuses. Chemical kinetic modeling is utilized to interpret these observations in the case of the POSF 4658 surrogate and provides a rationale as to why the two fuels share such similar reactivity.
AB - An implicit methodology based on chemical group theory to formulate a jet aviation fuel surrogate by the measurements of several combustion related fuel properties is tested. The empirical formula and derived cetane number of an actual aviation fuel, POSF 4658, have been determined. A three component surrogate fuel for POSF 4658, has been formulated by constraining a mixture of n-decane, iso-octane and toluene to reproduce the hydrogen/carbon ratio and derived cetane number of the target fuel. The validity of the proposed surrogate is evaluated by experimental measurement of select combustion properties of POSF 4658, and the POSF 4658 surrogate; 1) A variable pressure flow reactor has been used to chart the chemical reactivity of stoichiometric mixtures of POSF 4658/O2/N2 and POSF 4658 surrogate/O2/N2 at 12.5 atm and 500-1000K, fixing the carbon content at 0.3% for both mixtures. 2) The high temperature chemical reactivity and chemical kinetic-molecular diffusion coupling of POSF 4658 and POSF 4658 surrogate have been evaluated by measurement of the extinction limits of diffusion flames. 3) The autoignition behavior of POSF 4658 and POSF 4658 surrogate has been measured with a shock tube at 674-1222 K and with a rapid compression machine at 645-714K for stoichiometric mixtures of fuel in air at pressures close to 20 atm. The flow reactor study shows that the character and extent of chemical reactivity of both fuels at low temperature (500-675K) and high temperature (900K+) is extremely similar but differences in the end of the negative temperature coefficient regime between each fuel are observed. The diffusion flame extinction limits of both fuels are observed to be indistinguishable on a molar basis. Ignition delay measurements also show that POSF 4658 exhibits NTC behavior. Moreover, the ignition delays of both fuels are also extremely similar over the temperature range studied between both apparatuses. Chemical kinetic modeling is utilized to interpret these observations in the case of the POSF 4658 surrogate and provides a rationale as to why the two fuels share such similar reactivity.
UR - http://www.scopus.com/inward/record.url?scp=84943398021&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84943398021&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84943398021
T3 - Western States Section of the Combustion Institute Spring Technical Meeting 2010
SP - 799
EP - 816
BT - Western States Section of the Combustion Institute Spring Technical Meeting 2010
PB - Western States Section/Combustion Institute
T2 - Western States Section of the Combustion Institute Spring Technical Meeting 2010
Y2 - 22 March 2010 through 23 March 2010
ER -