A jet fuel surrogate formulated by real fuel properties

Stephen Dooley, Sang Hee Won, Marcos Chaos, Joshua Heyne, Yiguang Ju, Frederick L. Dryer, Kamal Kumar, Chih Jen Sung, Haowei Wang, Matthew A. Oehlschlaeger, Robert J. Santoro, Thomas A. Litzinger

Research output: Contribution to journalArticlepeer-review

555 Scopus citations


An implicit methodology based on chemical group theory to formulate a jet aviation fuel surrogate by the measurements of several combustion related fuel properties is tested. The empirical formula and derived cetane number of an actual aviation fuel, POSF 4658, have been determined. A three component surrogate fuel for POSF 4658 has been formulated by constraining a mixture of n-decane, iso-octane and toluene to reproduce the hydrogen/carbon ratio and derived cetane number of the target fuel. The validity of the proposed surrogate is evaluated by experimental measurement of select combustion properties of POSF 4658, and the POSF 4658 surrogate.(1)A variable pressure flow reactor has been used to chart the chemical reactivity of stoichiometric mixtures of POSF 4658/O2/N2 and POSF 4658 surrogate/O2/N2 at 12.5atm and 500-1000K, fixing the carbon content at 0.3% for both mixtures.(2)The high temperature chemical reactivity and chemical kinetic-molecular diffusion coupling of POSF 4658 and POSF 4658 surrogate have been evaluated by measurement of the strained extinction limit of diffusion flames.(3)The autoignition behavior of POSF 4658 and POSF 4658 surrogate has been measured with a shock tube at 674-1222K and with a rapid compression machine at 645-714K for stoichiometric mixtures of fuel in air at pressures close to 20atm. The flow reactor study shows that the character and extent of chemical reactivity of both fuels at low temperature (500-675. K) and high temperature (900. K+) are extremely similar. Slight differences in the transition from the end of the negative temperature coefficient regime to hot ignition are observed. The diffusion flame strained extinction limits of the fuels are observed to be indistinguishable when compared on a molar basis. Ignition delay measurements also show that POSF 4658 exhibits NTC behavior. Moreover, the ignition delays of both fuels are also extremely similar over the temperature range studied in both shock tube and rapid compression machine experiments. A chemical kinetic model is constructed and utilized to interpret the experimental observations and provides a rationale as to why the real fuel and surrogate fuel exhibit such similar reactivity.

Original languageEnglish (US)
Pages (from-to)2333-2339
Number of pages7
JournalCombustion and Flame
Issue number12
StatePublished - Dec 2010

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Chemical Engineering
  • Fuel Technology
  • Energy Engineering and Power Technology
  • General Physics and Astronomy


  • Combustion jet-A
  • Fuel properties
  • Group additivity
  • Jet fuel
  • Kinetic model
  • Surrogate formulation


Dive into the research topics of 'A jet fuel surrogate formulated by real fuel properties'. Together they form a unique fingerprint.

Cite this