A highly correlated topological bubble phase of composite fermions

Vidhi Shingla, Haoyun Huang, Ashwani Kumar, Loren N. Pfeiffer, Kenneth W. West, Kirk W. Baldwin, Gábor A. Csáthy

Research output: Contribution to journalArticlepeer-review

4 Scopus citations


Strong interactions and topology drive a wide variety of correlated ground states. Some of the most interesting of these ground states, such as fractional quantum Hall states and fractional Chern insulators, have fractionally charged quasiparticles. Correlations in these phases are captured by the binding of electrons and vortices into emergent particles called composite fermions. Composite fermion quasiparticles are randomly localized at high levels of disorder and may exhibit charge order when there is not too much disorder in the system. However, more complex correlations are predicted when composite fermion quasiparticles cluster into a bubble, and then these bubbles order on a lattice. Such a highly correlated ground state is termed the bubble phase of composite fermions. Here we report the observation of such a bubble phase of composite fermions, evidenced by the re-entrance of the fractional quantum Hall effect. We associate this re-entrance with a bubble phase with two composite fermion quasiparticles per bubble. Our results demonstrate the existence of a new class of strongly correlated topological phases driven by clustering and charge ordering of emergent quasiparticles.

Original languageEnglish (US)
Pages (from-to)689-693
Number of pages5
JournalNature Physics
Issue number5
StatePublished - May 2023
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy


Dive into the research topics of 'A highly correlated topological bubble phase of composite fermions'. Together they form a unique fingerprint.

Cite this