A high performance photonic pulse processing device

David Rosenbluth, Konstantin Kravtsov, Mable P. Fok, Paul R. Prucnal

Research output: Contribution to journalArticlepeer-review

76 Scopus citations


This paper presents an all optical fiber based implementation of a hybrid analog-digital computational primitive that provides a basis for complex processing on high bandwidth signals. A natural implementation of a hybrid analog/digital photonic processing primitive is achieved through the integration of new nonlinear fiber, and exploitation of the physics of semiconductor device to process signals in unique ways. Specifically, we describe the use of a semiconductor optical amplifier to implement leaky temporal integration of a signal and a highly Ge-doped nonlinear fiber for thresholding. A straightforward correspondence between our computational primitive and leaky-integrate- and-fire neurons permits leveraging of a large body of research characterizing the computational capabilities of these devices and the emerging pulse processing computational paradigm as a means to implement practical signal processing algorithms in hybrid computing platforms. An experimental demonstration of the behavior of the pulse processing primitive is presented.

Original languageEnglish (US)
Pages (from-to)22767-22772
Number of pages6
JournalOptics Express
Issue number25
StatePublished - Dec 7 2009

All Science Journal Classification (ASJC) codes

  • Atomic and Molecular Physics, and Optics


Dive into the research topics of 'A high performance photonic pulse processing device'. Together they form a unique fingerprint.

Cite this