A general recurrent state space framework for modeling neural dynamics during decision-making

David M. Zoltowski, Jonathan W. Pillow, Scott W. Linderman

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

An open question in systems and computational neuroscience is how neural circuits accumulate evidence towards a decision. Fitting models of decision-making theory to neural activity helps answer this question, but current approaches limit the number of these models that we can fit to neural data. Here we propose a general framework for modeling neural activity during decisionmaking. The framework includes the canonical drift-diffusion model and enables extensions such as multi-dimensional accumulators, variable and collapsing boundaries, and discrete jumps. Our framework is based on constraining the parameters of recurrent state space models, for which we introduce a scalable variational Laplace EM inference algorithm. We applied the modeling approach to spiking responses recorded from monkey parietal cortex during two decision-making tasks. We found that a two-dimensional accumulator better captured the responses of a set of parietal neurons than a single accumulator model, and we identified a variable lower boundary in the responses of a parietal neuron during a random dot motion task. We expect this framework will be useful for modeling neural dynamics in a variety of decision-making settings.

Original languageEnglish (US)
Title of host publication37th International Conference on Machine Learning, ICML 2020
EditorsHal Daume, Aarti Singh
PublisherInternational Machine Learning Society (IMLS)
Pages11616-11627
Number of pages12
ISBN (Electronic)9781713821120
StatePublished - 2020
Event37th International Conference on Machine Learning, ICML 2020 - Virtual, Online
Duration: Jul 13 2020Jul 18 2020

Publication series

Name37th International Conference on Machine Learning, ICML 2020
VolumePartF168147-15

Conference

Conference37th International Conference on Machine Learning, ICML 2020
CityVirtual, Online
Period7/13/207/18/20

All Science Journal Classification (ASJC) codes

  • Computational Theory and Mathematics
  • Human-Computer Interaction
  • Software

Fingerprint Dive into the research topics of 'A general recurrent state space framework for modeling neural dynamics during decision-making'. Together they form a unique fingerprint.

Cite this