A fresh look at electron cyclotron current drive power requirements for Stabilization of tearing modes in ITER

DIII-D Electron Cyclotron Operations and Dynamics & Control Groups

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations


ITER is an international project to design and build an experimental fusion reactor based on the "tokamak" concept. ITER relies upon localized electron cyclotron current drive (ECCD) at the rational safety factor q=2 to suppress or stabilize the expected poloidal mode m=2, toroidal mode n=1 neoclassical tearing mode (NTM) islands. Such islands if unmitigated degrade energy confinement, lock to the resistive wall (stop rotating), cause loss of "H-mode" and induce disruption. The International Tokamak Physics Activity (ITPA) on MHD, Disruptions and Magnetic Control joint experiment group MDC-8 on Current Drive Prevention/Stabilization of Neoclassical Tearing Modes started in 2005, after which assessments were made for the requirements for ECCD needed in ITER, particularly that of rf power and alignment on q=2 [1]. Narrow well-aligned rf current parallel to and of order of one percent of the total plasma current is needed to replace the "missing" current in the island O-points and heal or preempt (avoid destabilization by applying ECCD on q=2 in absence of the mode) the island [2-4]. This paper updates the advances in ECCD stabilization on NTMs learned in DIII-D experiments and modeling during the last 5 to 10 years as applies to stabilization by localized ECCD of tearing modes in ITER. This includes the ECCD (inside the q=1 radius) stabilization of the NTM "seeding" instability known as sawteeth (m/n=1/1) [5]. Recent measurements in DIII-D show that the ITER-similar current profile is classically unstable, curvature stabilization must not be neglected, and the small island width stabilization effect from helical ion polarization currents is stronger than was previously thought [6]. The consequences of updated assumptions in ITER modeling of the minimum well-aligned ECCD power needed are all-in-all favorable (and well-within the ITER 24 gyrotron capability) when all effects are included. However, a "wild card" may be broadening of the localized ECCD by the presence of the island; various theories predict broadening could occur and there is experimental evidence for broadening in DIII-D. Wider than now expected ECCD in ITER would make alignment easier to do but weaken the stabilization and thus require more rf power. In addition to updated modeling for ITER, advances in the ITER-relevant DIII-D ECCD gyrotron launch mirror control system hardware and real-time plasma control system have been made [7] and there are plans for application in DIII-D ITER demonstration discharges.

Original languageEnglish (US)
Title of host publicationRadio Frequency Power in Plasmas
Subtitle of host publicationProceedings of the 21St Topical Conference
EditorsRobert I. Pinsker
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735413368
StatePublished - Dec 10 2015
Event21st Topical Conference on Radiofrequency Power in Plasmas - Lake Arrowhead, United States
Duration: Apr 27 2015Apr 29 2015

Publication series

NameAIP Conference Proceedings
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616


Other21st Topical Conference on Radiofrequency Power in Plasmas
Country/TerritoryUnited States
CityLake Arrowhead

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy


Dive into the research topics of 'A fresh look at electron cyclotron current drive power requirements for Stabilization of tearing modes in ITER'. Together they form a unique fingerprint.

Cite this