A framework for studying synaptic plasticity with neural spike train data

Scott W. Linderman, Christopher H. Stock, Ryan P. Adams

Research output: Contribution to journalConference articlepeer-review

13 Scopus citations


Learning and memory in the brain are implemented by complex, time-varying changes in neural circuitry. The computational rules according to which synaptic weights change over time are the subject of much research, and are not precisely understood. Until recently, limitations in experimental methods have made it challenging to test hypotheses about synaptic plasticity on a large scale. However, as such data become available and these barriers are lifted, it becomes necessary to develop analysis techniques to validate plasticity models. Here, we present a highly extensible framework for modeling arbitrary synaptic plasticity rules on spike train data in populations of interconnected neurons. We treat synaptic weights as a (potentially nonlinear) dynamical system embedded in a fully-Bayesian generalized linear model (GLM). In addition, we provide an algorithm for inferring synaptic weight trajectories alongside the parameters of the GLM and of the learning rules. Using this method, we perform model comparison of two proposed variants of the well-known spike-timing-dependent plasticity (STDP) rule, where nonlinear effects play a substantial role. On synthetic data generated from the biophysical simulator NEURON, we show that we can recover the weight trajectories, the pattern of connectivity, and the underlying learning rules.

Original languageEnglish (US)
Pages (from-to)2330-2338
Number of pages9
JournalAdvances in Neural Information Processing Systems
Issue numberJanuary
StatePublished - 2014
Externally publishedYes
Event28th Annual Conference on Neural Information Processing Systems 2014, NIPS 2014 - Montreal, Canada
Duration: Dec 8 2014Dec 13 2014

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing


Dive into the research topics of 'A framework for studying synaptic plasticity with neural spike train data'. Together they form a unique fingerprint.

Cite this