Abstract
The need to reach high temperatures in an inertial fusion energy (IFE) target (or a target for the study of High Energy Density Physics, HEDP) requires the ability to focus ion beams down to a small spot. System models indicate that within the accelerator, the beam radius will be of the order of centimeters, whereas at the final focal spot on the target, a beam radius of the order of millimeters is required, so radial compression factors of order ten are required. The IFE target gain (and hence the overall cost of electricity) and the HEDP target temperature are sensitive functions of the final spot radius on target. Because of this sensitivity, careful attention needs to be paid to the spot radius calculation. We review our current understanding of the elements that enter into a systems model (such as emittance growth from chromatic, geometric, and non-linear space charge forces) for the final focus based on a quadrupolar magnet system. Published by Elsevier B.V.
| Original language | English (US) |
|---|---|
| Pages (from-to) | 243-254 |
| Number of pages | 12 |
| Journal | Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment |
| Volume | 544 |
| Issue number | 1-2 |
| DOIs | |
| State | Published - May 21 2005 |
| Event | Proceedings of the 15th International Symposium on Heavy Intertial Fusion HIF 2004 - Duration: Jun 7 2004 → Jun 11 2004 |
All Science Journal Classification (ASJC) codes
- Nuclear and High Energy Physics
- Instrumentation
Keywords
- Beam neutralization
- Chromatic aberrations
- Emittance growth
- Final focus
- Geometric aberrations
- Heavy-ion fusion
- Inertial fusion energy
- Space-charge