A dynamical model of growth and maturation in Drosophila

John J. Tyson, Amirali Monshizadeh, Stanislav Y. Shvartsman, Alexander W. Shingleton

Research output: Contribution to journalArticlepeer-review

Abstract

The decision to stop growing and mature into an adult is a critical point in development that determines adult body size, impacting multiple aspects of an adult’s biology. In many animals, growth cessation is a consequence of hormone release that appears to be tied to the attainment of a particular body size or condition. Nevertheless, the size-sensing mechanism animals use to initiate hormone synthesis is poorly understood. Here, we develop a simple mathematical model of growth cessation in Drosophila melanogaster, which is ostensibly triggered by the attainment of a critical weight (CW) early in the last instar. Attainment of CW is correlated with the synthesis of the steroid hormone ecdysone, which causes a larva to stop growing, pupate, and metamorphose into the adult form. Our model suggests that, contrary to expectation, the size-sensing mechanism that initiates metamorphosis occurs before the larva reaches CW; that is, the critical-weight phenomenon is a downstream consequence of an earlier size-dependent developmental decision, not a decision point itself. Further, this size-sensing mechanism does not require a direct assessment of body size but emerges from the interactions between body size, ecdysone, and nutritional signaling. Because many aspects of our model are evolutionarily conserved among all animals, the model may provide a general framework for understanding how animals commit to maturing from their juvenile to adult form.

Original languageEnglish (US)
Article numbere2313224120
JournalProceedings of the National Academy of Sciences of the United States of America
Volume120
Issue number49
DOIs
StatePublished - 2023

All Science Journal Classification (ASJC) codes

  • General

Keywords

  • body size
  • growth cessation
  • hormonal regulation
  • mathematical modeling
  • puberty

Fingerprint

Dive into the research topics of 'A dynamical model of growth and maturation in Drosophila'. Together they form a unique fingerprint.

Cite this