A dynamic wall modeling approach for large eddy simulation of offshore wind farms in realistic oceanic conditions

A. K. Aiyer, L. Deike, M. E. Mueller

Research output: Contribution to journalArticlepeer-review

Abstract

Due to the multitude of scales present in realistic oceanic conditions, resolving the surface stress is computationally intensive, motivating modeling approaches. In this work, a dynamic wave drag model is developed for large eddy simulation (LES) to quantify the effects of multiscale dynamically rough surfaces on the atmospheric boundary layer. The waves are vertically unresolved, and the total drag due to the horizontally resolved portion of the wave spectrum is computed through a superposition of the force from each mode. As LES can only resolve the horizontal wind-wave interactions to the filter scale Δ, the effects of the horizontally unresolved, subfilter waves are modeled by specifying a roughness length scale characterizing the unresolved wave energy spectrum. This subfilter roughness is set proportional to the subfilter root mean square of the wave height distribution, and the constant of proportionality is evaluated dynamically during the simulation based on the assumption that the total drag force at the wave surface is independent of the filter scale. The dynamic approach is used to simulate the airflow over a spectrum of moving waves, and the results are validated against high-fidelity phase-resolved simulations. The dynamic approach combined with the wave spectrum drag model is then used to study flow through a fixed-bottom offshore wind farm array, equivalent to an infinite farm, with each turbine represented using an actuator disk model. The dynamic model accurately adapts to the changing velocity field and accurately predicts the mean velocity profiles and power produced from the offshore wind farm. Furthermore, the effect of the wind-wave interactions on the mean velocity profiles, power production, and kinetic energy budget is quantified.

Original languageEnglish (US)
Article number013305
JournalJournal of Renewable and Sustainable Energy
Volume16
Issue number1
DOIs
StatePublished - Jan 1 2024

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment

Fingerprint

Dive into the research topics of 'A dynamic wall modeling approach for large eddy simulation of offshore wind farms in realistic oceanic conditions'. Together they form a unique fingerprint.

Cite this