A Disintegrating Rocky Planet with Prominent Comet-like Tails around a Bright Star

Marc Hon, Saul Rappaport, Avi Shporer, Andrew Vanderburg, Karen A. Collins, Cristilyn N. Watkins, Richard P. Schwarz, Khalid Barkaoui, Samuel W. Yee, Joshua N. Winn, Alex S. Polanski, Emily A. Gilbert, David R. Ciardi, Jeroen Audenaert, William Fong, Jack Haviland, Katharine Hesse, Daniel Muthukrishna, Glen Petitpas, Ellie Hadjiyska SchmelzerNorio Narita, Akihiko Fukui, Sara Seager, George R. Ricker

Research output: Contribution to journalArticlepeer-review

Abstract

We report the discovery of BD+05 4868 Ab, a transiting exoplanet orbiting a bright (V = 10.16) K-dwarf (TIC 466376085) with a period of 1.27 days. Observations from NASA’s Transiting Exoplanet Survey Satellite reveal variable transit depths and asymmetric transit profiles that are characteristic of comet-like tails formed by dusty effluents emanating from a disintegrating planet. Unique to BD+05 4868 Ab is the presence of prominent dust tails in both the trailing and leading directions that contribute to the extinction of starlight from the host star. By fitting the observed transit profile and analytically modeling the drift of dust grains within both dust tails, we infer large grain sizes (∼1-10 μm) and a mass-loss rate of 10 M Gyr−1, suggestive of a lunar-mass object with a disintegration timescale of only several Myr. The host star is probably older than the Sun and is accompanied by an M-dwarf companion at a projected physical separation of 130 au. The brightness of the host star, combined with the planet’s relatively deep transits (0.8%-2.0%), presents BD+05 4868 Ab as a prime target for compositional studies of rocky exoplanets and investigations into the nature of catastrophically evaporating planets.

Original languageEnglish (US)
Article numberL3
JournalAstrophysical Journal Letters
Volume984
Issue number1
DOIs
StatePublished - May 1 2025

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'A Disintegrating Rocky Planet with Prominent Comet-like Tails around a Bright Star'. Together they form a unique fingerprint.

Cite this