TY - GEN
T1 - A convex optimization framework for active learning
AU - Elhamifar, Ehsan
AU - Sapiro, Guillermo
AU - Yang, Allen
AU - Sasrty, S. Shankar
PY - 2013
Y1 - 2013
N2 - In many image/video/web classification problems, we have access to a large number of unlabeled samples. However, it is typically expensive and time consuming to obtain labels for the samples. Active learning is the problem of progressively selecting and annotating the most informative unlabeled samples, in order to obtain a high classification performance. Most existing active learning algorithms select only one sample at a time prior to retraining the classifier. Hence, they are computationally expensive and cannot take advantage of parallel labeling systems such as Mechanical Turk. On the other hand, algorithms that allow the selection of multiple samples prior to retraining the classifier, may select samples that have significant information overlap or they involve solving a non-convex optimization. More importantly, the majority of active learning algorithms are developed for a certain classifier type such as SVM. In this paper, we develop an efficient active learning framework based on convex programming, which can select multiple samples at a time for annotation. Unlike the state of the art, our algorithm can be used in conjunction with any type of classifiers, including those of the family of the recently proposed Sparse Representation-based Classification (SRC). We use the two principles of classifier uncertainty and sample diversity in order to guide the optimization program towards selecting the most informative unlabeled samples, which have the least information overlap. Our method can incorporate the data distribution in the selection process by using the appropriate dissimilarity between pairs of samples. We show the effectiveness of our framework in person detection, scene categorization and face recognition on real-world datasets.
AB - In many image/video/web classification problems, we have access to a large number of unlabeled samples. However, it is typically expensive and time consuming to obtain labels for the samples. Active learning is the problem of progressively selecting and annotating the most informative unlabeled samples, in order to obtain a high classification performance. Most existing active learning algorithms select only one sample at a time prior to retraining the classifier. Hence, they are computationally expensive and cannot take advantage of parallel labeling systems such as Mechanical Turk. On the other hand, algorithms that allow the selection of multiple samples prior to retraining the classifier, may select samples that have significant information overlap or they involve solving a non-convex optimization. More importantly, the majority of active learning algorithms are developed for a certain classifier type such as SVM. In this paper, we develop an efficient active learning framework based on convex programming, which can select multiple samples at a time for annotation. Unlike the state of the art, our algorithm can be used in conjunction with any type of classifiers, including those of the family of the recently proposed Sparse Representation-based Classification (SRC). We use the two principles of classifier uncertainty and sample diversity in order to guide the optimization program towards selecting the most informative unlabeled samples, which have the least information overlap. Our method can incorporate the data distribution in the selection process by using the appropriate dissimilarity between pairs of samples. We show the effectiveness of our framework in person detection, scene categorization and face recognition on real-world datasets.
UR - http://www.scopus.com/inward/record.url?scp=84898808985&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84898808985&partnerID=8YFLogxK
U2 - 10.1109/ICCV.2013.33
DO - 10.1109/ICCV.2013.33
M3 - Conference contribution
AN - SCOPUS:84898808985
SN - 9781479928392
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 209
EP - 216
BT - Proceedings - 2013 IEEE International Conference on Computer Vision, ICCV 2013
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2013 14th IEEE International Conference on Computer Vision, ICCV 2013
Y2 - 1 December 2013 through 8 December 2013
ER -